- windows下使用tensorboard
- tensorflow 官网上的例子程序都是针对Linux下的;文件路径需要更改
- tensorflow1.1和1.3的启动方式不一样 :参考:
- Could you try using python -m tensorboard --logdir "${MODEL_DIR}" instead? I suspect that this will fix your issue.
- I should have written tensorboard.main instead of TensorBoard: python -m tensorboard.main --logdir "${MODEL_DIR}"
但是虽然启动了6006端口,但是加载文件失败,这个问题留到后面解决,继续跟进tensorflow学习
更新几个现有的demo
如路径为:E:\MyTensorBoard\logs, logs中又包含train和test。此时,TensorBoard通过读取事件文件来运行,通过在cmd 中键入命令:tensorboard --logdir=log文件路径。按照我们当前目录,若写成:tensorboard --logdir=E:\MyTensorBoard\logs显示结果是:No scalar、No image...,然而查了几遍代码也没有问题,事件文件也没有问题。解决方法:方法一:将cmd的默认路径cd到log文件的上一层,即cd /d E:\MyTensorBoard,之后等号后面直接键入log文件名即可,不需写全路径,即 tensorboard --logdir=logs。方法二:双斜杠,即tensorboard --logdir=E://MyTensorBoard//logs。最后根据得到的网址http://hostIP:6006,在chrome里打开,就可以可视化我们的图表了,幸福来的太突然
Tensor与Graph可视化
- Summary:所有需要在TensorBoard上展示的统计结果。
- tf.name_scope():为Graph中的Tensor添加层级,TensorBoard会按照代码指定的层级进行展示,初始状态下只绘制最高层级的效果,点击后可展开层级看到下一层的细节。
- tf.summary.scalar():添加标量统计结果。
- tf.summary.histogram():添加任意shape的Tensor,统计这个Tensor的取值分布。
- tf.summary.merge_all():添加一个操作,代表执行所有summary操作,这样可以避免人工执行每一个summary op。
- tf.summary.FileWrite:用于将Summary写入磁盘,需要制定存储路径logdir,如果传递了Graph对象,则在Graph Visualization会显示Tensor Shape Information。执行summary op后,将返回结果传递给add_summary()方法即可。
import gzipimport structimport numpy as npfrom sklearn.linear_model import LogisticRegressionfrom sklearn import preprocessingfrom sklearn.metrics import accuracy_scoreimport tensorflow as tf# MNIST data is stored in binary format,# and we transform them into numpy ndarray objects by the following two utility functionsdef read_image(file_name): with gzip.open(file_name, 'rb') as f: buf = f.read() index = 0 magic, images, rows, columns = struct.unpack_from('>IIII', buf, index) index += struct.calcsize('>IIII') image_size = '>' + str(images * rows * columns) + 'B' ims = struct.unpack_from(image_size, buf, index) im_array = np.array(ims).reshape(images, rows, columns) return im_arraydef read_label(file_name): with gzip.open(file_name, 'rb') as f: buf = f.read() index = 0 magic, labels = struct.unpack_from('>II', buf, index) index += struct.calcsize('>II') label_size = '>' + str(labels) + 'B' labels = struct.unpack_from(label_size, buf, index) label_array = np.array(labels) return label_arrayprint ("Start processing MNIST handwritten digits data...")train_x_data = read_image("MNIST_data/train-images-idx3-ubyte.gz")train_x_data = train_x_data.reshape(train_x_data.shape[0], -1).astype(np.float32)train_y_data = read_label("MNIST_data/train-labels-idx1-ubyte.gz")test_x_data = read_image("MNIST_data/t10k-images-idx3-ubyte.gz")test_x_data = test_x_data.reshape(test_x_data.shape[0], -1).astype(np.float32)test_y_data = read_label("MNIST_data/t10k-labels-idx1-ubyte.gz")train_x_minmax = train_x_data / 255.0test_x_minmax = test_x_data / 255.0# Of course you can also use the utility function to read in MNIST provided by tensorflow# from tensorflow.examples.tutorials.mnist import input_data# mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)# train_x_minmax = mnist.train.images# train_y_data = mnist.train.labels# test_x_minmax = mnist.test.images# test_y_data = mnist.test.labels# We evaluate the softmax regression model by sklearn firsteval_sklearn = Falseif eval_sklearn: print ("Start evaluating softmax regression model by sklearn...") reg = LogisticRegression(solver="lbfgs", multi_class="multinomial") reg.fit(train_x_minmax, train_y_data) np.savetxt('coef_softmax_sklearn.txt', reg.coef_, fmt='%.6f') # Save coefficients to a text file test_y_predict = reg.predict(test_x_minmax) print ("Accuracy of test set: %f" % accuracy_score(test_y_data, test_y_predict))eval_tensorflow = Truebatch_gradient = False# Summary:所有需要在TensorBoard上展示的统计结果。def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var)if eval_tensorflow: print ("Start evaluating softmax regression model by tensorflow...") # reformat y into one-hot encoding style lb = preprocessing.LabelBinarizer() lb.fit(train_y_data) train_y_data_trans = lb.transform(train_y_data) test_y_data_trans = lb.transform(test_y_data) x = tf.placeholder(tf.float32, [None, 784]) with tf.name_scope('weights'): W = tf.Variable(tf.zeros([784, 10])) variable_summaries(W) with tf.name_scope('biases'): b = tf.Variable(tf.zeros([10])) variable_summaries(b) with tf.name_scope('Wx_plus_b'): V = tf.matmul(x, W) + b tf.summary.histogram('pre_activations', V) with tf.name_scope('softmax'): y = tf.nn.softmax(V) tf.summary.histogram('activations', y) y_ = tf.placeholder(tf.float32, [None, 10]) with tf.name_scope('cross_entropy'): loss = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) tf.summary.scalar('cross_entropy', loss) with tf.name_scope('train'): optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) with tf.name_scope('evaluate'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', accuracy) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter('tmp/train', sess.graph) test_writer = tf.summary.FileWriter('tmp/test') if batch_gradient: for step in range(300): sess.run(train, feed_dict={x: train_x_minmax, y_: train_y_data_trans}) if step % 10 == 0: print ("Batch Gradient Descent processing step %d" % step) print ("Finally we got the estimated results, take such a long time...") else: for step in range(1000): if step % 10 == 0: summary, acc = sess.run([merged, accuracy], feed_dict={x: test_x_minmax, y_: test_y_data_trans}) test_writer.add_summary(summary, step) print ("Stochastic Gradient Descent processing step %d accuracy=%.2f" % (step, acc)) else: sample_index = np.random.choice(train_x_minmax.shape[0], 100) batch_xs = train_x_minmax[sample_index, :] batch_ys = train_y_data_trans[sample_index, :] summary, _ = sess.run([merged, train], feed_dict={x: batch_xs, y_: batch_ys}) train_writer.add_summary(summary, step) np.savetxt('coef_softmax_tf.txt', np.transpose(sess.run(W)), fmt='%.6f') # Save coefficients to a text file print ("Accuracy of test set: %f" % sess.run(accuracy, feed_dict={x: test_x_minmax, y_: test_y_data_trans}))
Embeddings
- TensorBoard是TensorFlow自带的一个可视化工具,Embeddings是其中的一个功能,用于在二维或三维空间对高维数据进行探索
# -*- coding: utf-8 -*-# @author: ranjiewen# @date: 2017-02-08# @description: hello world program to set up embedding projector in TensorBoard based on MNIST# @ref: http://yann.lecun.com/exdb/mnist/, https://www.tensorflow.org/images/mnist_10k_sprite.png#import numpy as npimport tensorflow as tffrom tensorflow.contrib.tensorboard.plugins import projectorfrom tensorflow.examples.tutorials.mnist import input_dataimport osPATH_TO_MNIST_DATA = "MNIST_data"LOG_DIR = "emd"IMAGE_NUM = 10000# Read in MNIST data by utility functions provided by TensorFlowmnist = input_data.read_data_sets(PATH_TO_MNIST_DATA, one_hot=False)# Extract target MNIST image dataplot_array = mnist.test.images[:IMAGE_NUM] # shape: (n_observations, n_features)# Generate meta datanp.savetxt(os.path.join(LOG_DIR, 'metadata.tsv'), mnist.test.labels[:IMAGE_NUM], fmt='%d')# Download sprite image# https://www.tensorflow.org/images/mnist_10k_sprite.png, 100x100 thumbnailsPATH_TO_SPRITE_IMAGE = os.path.join(LOG_DIR, 'mnist_10k_sprite.png')# To visualise your embeddings, there are 3 things you need to do:# 1) Setup a 2D tensor variable(s) that holds your embedding(s)session = tf.InteractiveSession()embedding_var = tf.Variable(plot_array, name='embedding')tf.global_variables_initializer().run()# 2) Periodically save your embeddings in a LOG_DIR# Here we just save the Tensor once, so we set global_step to a fixed numbersaver = tf.train.Saver()saver.save(session, os.path.join(LOG_DIR, "model.ckpt"), global_step=0)# 3) Associate metadata and sprite image with your embedding# Use the same LOG_DIR where you stored your checkpoint.summary_writer = tf.summary.FileWriter(LOG_DIR)config = projector.ProjectorConfig()# You can add multiple embeddings. Here we add only one.embedding = config.embeddings.add()embedding.tensor_name = embedding_var.name# Link this tensor to its metadata file (e.g. labels).embedding.metadata_path = os.path.join(LOG_DIR, 'metadata.tsv')# Link this tensor to its sprite image.embedding.sprite.image_path = PATH_TO_SPRITE_IMAGEembedding.sprite.single_image_dim.extend([28, 28])# Saves a configuration file that TensorBoard will read during startup.projector.visualize_embeddings(summary_writer, config)
官网demo
- 注意更改文件路径
"""A simple MNIST classifier which displays summaries in TensorBoard.This is an unimpressive MNIST model, but it is a good example of usingtf.name_scope to make a graph legible in the TensorBoard graph explorer, and ofnaming summary tags so that they are grouped meaningfully in TensorBoard.It demonstrates the functionality of every TensorBoard dashboard."""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport argparseimport osimport sysimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataFLAGS = None #"F:\RANJIEWEN\Deep_learning\TensorFlow\log"def train(): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data) sess = tf.InteractiveSession() # Create a multilayer model. # Input placeholders with tf.name_scope('input'): x = tf.placeholder(tf.float32, [None, 784], name='x-input') y_ = tf.placeholder(tf.float32, [None, 10], name='y-input') with tf.name_scope('input_reshape'): image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) tf.summary.image('input', image_shaped_input, 10) # We can't initialize these variables to 0 - the network will get stuck. def weight_variable(shape): """Create a weight variable with appropriate initialization.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): """Create a bias variable with appropriate initialization.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): """Reusable code for making a simple neural net layer. It does a matrix multiply, bias add, and then uses ReLU to nonlinearize. It also sets up name scoping so that the resultant graph is easy to read, and adds a number of summary ops. """ # Adding a name scope ensures logical grouping of the layers in the graph. with tf.name_scope(layer_name): # This Variable will hold the state of the weights for the layer with tf.name_scope('weights'): weights = weight_variable([input_dim, output_dim]) variable_summaries(weights) with tf.name_scope('biases'): biases = bias_variable([output_dim]) variable_summaries(biases) with tf.name_scope('Wx_plus_b'): preactivate = tf.matmul(input_tensor, weights) + biases tf.summary.histogram('pre_activations', preactivate) activations = act(preactivate, name='activation') tf.summary.histogram('activations', activations) return activations hidden1 = nn_layer(x, 784, 500, 'layer1') with tf.name_scope('dropout'): keep_prob = tf.placeholder(tf.float32) tf.summary.scalar('dropout_keep_probability', keep_prob) dropped = tf.nn.dropout(hidden1, keep_prob) # Do not apply softmax activation yet, see below. y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity) with tf.name_scope('cross_entropy'): # The raw formulation of cross-entropy, # # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)), # reduction_indices=[1])) # # can be numerically unstable. # # So here we use tf.nn.softmax_cross_entropy_with_logits on the # raw outputs of the nn_layer above, and then average across # the batch. diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y) with tf.name_scope('total'): cross_entropy = tf.reduce_mean(diff) tf.summary.scalar('cross_entropy', cross_entropy) with tf.name_scope('train'): train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize( cross_entropy) with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', accuracy) # Merge all the summaries and write them out to # /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)# log/train or log/test merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test') tf.global_variables_initializer().run() # Train the model, and also write summaries. # Every 10th step, measure test-set accuracy, and write test summaries # All other steps, run train_step on training data, & add training summaries def feed_dict(train): """Make a TensorFlow feed_dict: maps data onto Tensor placeholders.""" if train or FLAGS.fake_data: xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data) k = FLAGS.dropout else: xs, ys = mnist.test.images, mnist.test.labels k = 1.0 return {x: xs, y_: ys, keep_prob: k} for i in range(FLAGS.max_steps): if i % 10 == 0: # Record summaries and test-set accuracy summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False)) test_writer.add_summary(summary, i) print('Accuracy at step %s: %s' % (i, acc)) else: # Record train set summaries, and train if i % 100 == 99: # Record execution stats run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True), options=run_options, run_metadata=run_metadata) train_writer.add_run_metadata(run_metadata, 'step%03d' % i) train_writer.add_summary(summary, i) print('Adding run metadata for', i) else: # Record a summary summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True)) train_writer.add_summary(summary, i) train_writer.close() test_writer.close()def main(_): if tf.gfile.Exists(FLAGS.log_dir): tf.gfile.DeleteRecursively(FLAGS.log_dir) tf.gfile.MakeDirs(FLAGS.log_dir) train()if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--fake_data', nargs='?', const=True, type=bool, default=False, help='If true, uses fake data for unit testing.') parser.add_argument('--max_steps', type=int, default=1000, help='Number of steps to run trainer.') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate') parser.add_argument('--dropout', type=float, default=0.9, help='Keep probability for training dropout.') # parser.add_argument( # '--data_dir', # type=str, # default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), # 'tensorflow/mnist/input_data'), # help='Directory for storing input data') # parser.add_argument( # '--log_dir', # type=str, # default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), # 'tensorflow/mnist/logs/mnist_with_summaries'), # help='Summaries log directory') parser.add_argument( '--data_dir', type=str, default=os.path.join(os.getenv('TEST_TMPDIR', 'F:\RANJIEWEN\Deep_learning\TensorFlow\MNIST_data')), help='Directory for storing input data') parser.add_argument( '--log_dir', type=str, default=os.path.join(os.getenv('TEST_TMPDIR', 'F:\RANJIEWEN\Deep_learning\TensorFlow\log')), help='Summaries log directory') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)